Statistics
- Fakult?t
Fakult?t Wirtschafts- und Sozialwissenschaften (WiSo)
- Version
Version 1 vom 15.01.2025.
- Modulkennung
22B0753
- Niveaustufe
Bachelor
- Unterrichtssprache
Englisch
- ECTS-Leistungspunkte und Benotung
5.0
- H?ufigkeit des Angebots des Moduls
Winter- und Sommersemester
- Dauer des Moduls
1 Semester
- Kurzbeschreibung
This course is an intensive introduction to statistics aimed at preparing students for conducting a study in a real-world setting. The course provides the theoretical and technical details of various statistical methods, and serves as a tool to assist in all phases of the scientific process of statistical data analysis from data collection, via determining appropriate methods and statistical computing, to clearly communicating study outcomes.
- Lehr-Lerninhalte
1 Introduction to statistics
1.1 Key concepts
1.2 Qualitative and quantitative variables
1.3 Statistical software overview
1.4 Introduction to selected statistical software2 One-dimensional frequency distribution
2.1 Empirical distribution function
2.2 Measures of location
2.3 Measures of scale
2.4 Graphical representation
2.5 Economic applications3 Two-dimensional frequency distribution
3.1 Two-dimensional frequency tables
3.2 Marginal and conditional distributions
3.3 Contingency tables
3.4 Measures of association
3.5 Economic applications4 Correlation and regression
4.1 Correlation analysis
4.2 Simple linear regression
4.3 Multiple linear regression
4.5 Economic applications5 Basics of probability theory
5.1 Key concepts
5.2 Conditional probability, independence and Bayes’ rule
5.3 Event trees
5.4 Economic applications6 Probability distributions
6.1 Probability distributions for discrete random variables
6.2 Probability distributions for continuous random variables
6.3 Economic applications7 Parameter estimation
7.1 Key concepts
7.2 Confidence intervals for the mean, proportion value and the variance
7.3 Economic applications8 Hypothesis testing
8.1 Key concepts
8.2 One-sample tests
8.3 Two-sample tests
8.4 Economic applications
- Gesamtarbeitsaufwand
Der Arbeitsaufwand für das Modul umfasst insgesamt 150 Stunden (siehe auch "ECTS-Leistungspunkte und Benotung").
- Lehr- und Lernformen
Dozentengebundenes Lernen Std. Workload Lehrtyp Mediale Umsetzung Konkretisierung 30 Vorlesung Pr?senz - 30 ?bung Pr?senz - Dozentenungebundenes Lernen Std. Workload Lehrtyp Mediale Umsetzung Konkretisierung 30 Veranstaltungsvor- und -nachbereitung - 20 Hausaufgaben - 20 Literaturstudium - 20 Prüfungsvorbereitung -
- Benotete Prüfungsleistung
- Klausur oder
- Portfolio-Prüfungsleistung
- Bemerkung zur Prüfungsart
PFP comprises a total of 100 points and consists of a homework assignment (HA) and a one-hour written examination (K1). Both elements are assigned 50 points.
- Prüfungsdauer und Prüfungsumfang
Written examination: in accordance with the valid study regulations
Homework assignment as part of the PFP: approx. 15-20 pages
The requirements are specified in the respective lectures.
- Empfohlene Vorkenntnisse
Arithmetic
- Wissensverbreiterung
Students distinguish the core areas of statistics. They can explain and illustrate the underlying ideas of specific methods and their principal areas of application.
- Wissensvertiefung
Students can justify the method selection, use software to do statistics, provide a comprehensive result interpretation, verify hypotheses, present the results, and summarize the outcomes in an integrative manner.
- Wissensverst?ndnis
Students are able to critically reflect issues around the data. They can critically evaluate the collected datasets, statistical methods and their outcomes. They can also discuss their outcomes through theoretical- and practice-relevant arguments.
- Nutzung und Transfer
Students are able to transfer their knowledge to real-world case studies including summary statistics calculation, uni- and bi-variate frequency analysis, simple and multiple regression analysis, basic forecast, event tree analysis, parameter estimation, hypothesis testing, interpretation and visualisation of results, and the use of appropriate statistical software.
- Wissenschaftliche Innovation
Students are able to formulate research questions and hypotheses, select appropriate methodology, undertake research, handle data issues, solve statistical problems and present outcomes. They are able to justify their decisions by means of statistical methods and comprehensive analysis.
- Kommunikation und Kooperation
Students can present, visualise and communicate the analysis outcomes in oral presentations and in comprehensible written reports.
- Wissenschaftliches Selbstverst?ndnis / Professionalit?t
Students are able to critically reflect, question, and communicate the potential and limitations of statistical methods in applied analyses. They are aware of basic data protection issues.
- Literatur
Chapman C & McDonnell Feit E (2015) R for Marketing Research and Analytics (2015th ed.), New York, NY, Springer.
Field A, & Miles J (2012) Discovering Statistics Using R. London, Thousand Oaks, Calif, Sage Publications Ltd.
McClave J , Benson G, & Sincich T (2021) Statistics for Business and Economics: Pearson New International Edition (14th ed.), Pearson.
- Zusammenhang mit anderen Modulen
This module prepares students for data-based further studies in any subject area.
- Verwendbarkeit nach Studieng?ngen
- International Management
- International Management, B.A. (01.09.2024)
- Internationale Betriebswirtschaft und Management
- Internationale Betriebswirtschaft und Management, B.A. (01.09.2024)
- Betriebswirtschaft und Management - WiSo
- Betriebswirtschaft und Management, B.A. (01.09.2024) WiSo
- Betriebswirtschaft im Gesundheitswesen
- Betriebswirtschaft im Gesundheitswesen, B.A. (01.09.2024)
- Internationale ?konomie und Nachhaltigkeit
- Internationale ?konomie und Nachhaltigkeit B.A. (01.09.2024)
- Modulpromotor*in
- Markovic-Bredthauer, Danijela
- Lehrende
- Markovic-Bredthauer, Danijela