Angewandte Biometrie und Statistik in den Gesundheitsberufen

Fakult?t

Fakult?t Wirtschafts- und Sozialwissenschaften (WiSo)

Version

Version 1 vom 24.07.2023.

Modulkennung

22M0912

Niveaustufe

Master

Unterrichtssprache

Deutsch

ECTS-Leistungspunkte und Benotung

5.0

H?ufigkeit des Angebots des Moduls

nur Sommersemester

Dauer des Moduls

1 Semester

 

 

Kurzbeschreibung

Die statistische Datenauswertung ist ein Schlüsselelement bei der Planung und Durchführung von Forschungsprojekten im Rahmen von Versorgungsforschung. Die Grundlagen der Statistik sowie in der Versorgungsforschung h?ufig verwendete, statistische Verfahren sind Gegenstand des Moduls. Dazu werden Beispieldatens?tze aus der Versorgungsforschung exemplarisch mithilfe einschl?giger statistischer Software analysiert.

Lehr-Lerninhalte

1 Statistik für die praktische Forschung

1.1 Forschungsdesigns und statistische Analysen

1.1.1 ?bersicht experimentelle Designs und Analysen

1.1.2 ?bersicht nicht-experimentelle Designs und Analysen

1.2 Einführendes Beispiel mit praktischer Datenanalyse

 

2 Vom Konstrukt zur Messung

2.1 Konstrukte und Operationalisierung

2.2 Entwurf von Messinstrumenten

2.2.1 Gütekriterien: Reliabilit?t, Validit?t, Objektivit?t

2.2.2 Auswahl und Design von Messinstrumenten

2.2.2 Messung von Reliabilit?t und Validit?t

2.2.3 Messung der Objektivit?t

2.2.4 Beispiele aus Pflege-, Therapie- und Hebammenwissenschaft

 

3 Hypothesentesten und Signifikanztests

3.1 Von den Forschungsfragen zu den statistischen Hypothesen

3.1.1 Arten von Hypothesen 

3.1.2 Signifikanztests als Entscheidungskriterien 

3.1.3 Rolle von Verteilungen in Signifikanztests

3.1.4 Einfacher z-Test zur Veranschaulichung des Prinzips

3.1.5 Signifikanztests und Konfidenzintervall: ein Vergleich

3.1.6 ?bersicht über Signifikanztests und ihre Voraussetzungen

3.2 Verfahren für Unterschiedshypothesen bei 2 und k Gruppen

3.2.1 Ausgew?hlte Verfahren für metrische Daten

3.2.2 ?bungen in SPSS mit Beispielen aus Pflege-, Therapie- und Hebammenwissenschaft

3.2.3 Ausgew?hlte Verfahren für ordinale Daten

3.2.4 ?bungen in SPSS mit Beispielen aus Pflege-, Therapie- und Hebammenwissenschaft

3.2.5 Ausgew?hlte Verfahren für kategoriale Daten

3.2.6 ?bungen in SPSS mit Beispielen aus Pflege-, Therapie- und Hebammenwissenschaft

 

4 Confounding und Effektmodifikation

4.1 Beschreibung beider Konzepte 

4.2 Datenbeispiele aus Pflege-, Therapie- und Hebammenwissenschaft

4.3 Analysestrategien

4.4 ?bungen in SPSS mit Beispielen aus Pflege-, Therapie- und Hebammenwissenschaft

Gesamtarbeitsaufwand

Der Arbeitsaufwand für das Modul umfasst insgesamt 150 Stunden (siehe auch "ECTS-Leistungspunkte und Benotung").

Lehr- und Lernformen
Dozentengebundenes Lernen
Std. WorkloadLehrtypMediale UmsetzungKonkretisierung
30VorlesungPr?senz-
30SeminarPr?senz-
Dozentenungebundenes Lernen
Std. WorkloadLehrtypMediale UmsetzungKonkretisierung
45Prüfungsvorbereitung-
45Veranstaltungsvor- und -nachbereitung-
Benotete Prüfungsleistung
  • Portfolio-Prüfungsleistung oder
  • Antwort-Wahl-Verfahren-Klausur
Bemerkung zur Prüfungsart

Variante 1: Die Portfolio-Prüfung umfasst 100 Punkte und besteht aus einem Antwort-Wahl-Verfahren (AWV) und einem Projektbericht, medial (PME). Das AWV und der PME werden jeweils mit 50 Punkten gewichtet.

Variante 2: Die Portfolio-Prüfung umfasst 100 Punkte und besteht aus einem Antwort-Wahl-Verfahren (AWV) und einem Projektbericht, schriftlich (PSC). Das AWV und der PSC werden jeweils mit 50 Punkten gewichtet

Prüfungsdauer und Prüfungsumfang

Portfolio-Prüfung Variante 1: AWV: ca. 1 Stunde; PME: ca. 10-15 Seiten

Portfolio-Prüfung Variante 2: AWV: ca. 1 Stunde; PSC: ca. 10-15 Seiten 

Antwort-Wahl-Verfahren: ca. 2 Stunden

Die Anforderungen werden in der jeweiligen konkreten Veranstaltung pr?zisiert.

Empfohlene Vorkenntnisse

Grundkenntnisse in Statistik (i. d. R. aus dem Vorstudium)

Wissensverbreiterung

Die Studierenden kennen die Grundlagen statistischer Datenanalyse und die wichtigsten statistischen Tests und Verfahren.

Wissensvertiefung

Die Studierenden beschreiben die unterschiedlichen statistischen Verfahren, die im Rahmen von Versorgungsforschung zur Beantwortung spezifischer Forschungsfragen notwendig sind.

Wissensverst?ndnis

Die Studierenden k?nnen, abh?ngig von der jeweiligen Forschungsfrage und dem entsprechenden Forschungsdesign, geeignete statistische Verfahren gezielt ausw?hlen und anwenden, um Rückschlüsse auf die zu Grunde liegenden Forschungsfragen und Hypothesen aus dem Gebiet der Versorgungsforschung ziehen zu k?nnen.

Nutzung und Transfer

Die Studierenden k?nnen die entsprechenden statistischen Verfahren mithilfe von einschl?giger Software anwenden.

Wissenschaftliche Innovation

Neben der Anwendung geeigneter Datenanalysestrategien sind die Studierenden dazu f?hig, in einschl?gigen wissenschaftlichen Publikationen die Resultate unter der Berücksichtigung der Qualit?t der verwendeten Datenanalyse zu bewerten und daraus kritisch Implikationen für die Versorgungsforschung zu ziehen.

Kommunikation und Kooperation

Die Studierenden sind in der Lage, ihre Datenanalysestrategie zu pr?sentieren, rechtfertigen und kritisch zu bewerten.

Wissenschaftliches Selbstverst?ndnis / Professionalit?t

Die Studierenden kennen die Bedeutung und Notwendigkeit statistischer Analysestrategien für den Bereich der Versorgungsforschung.

Literatur

Bortz, J.; Schuster, C. (2010): Statistik für Human- und Sozialwissenschaftler. 7. Auflage. Heidelberg: Springer.

Bortz, J., D?ring (2006): Forschungsmethoden und Evaluation für Human- und Sozialwissenschaftler. Heidelberg: Springer.

Field, A. (2013): Discovering Statistics Using SPSS.; Auflage: 4th Edition. Sage Publications Ltd.

Zusammenhang mit anderen Modulen

Dieses Modul geh?rt zu dem Themenkomplex Versorgungsforschung und baut auf den Kenntnissen aus dem Modul ?Epidemiologie und soziale Demographie in den Gesundheitsberufen“ auf und bereitet auf die Datenanalyse für quantitativ ausgelegte Masterarbeiten im Kontext von Versorgungsforschung vor. 

Verwendbarkeit nach Studieng?ngen

  • HELPP – Versorgungsforschung und -gestaltung
    • HELPP - Versorgungsforschung und -gestaltung, M.Sc. (01.09.2023)

    Modulpromotor*in
    • Ballenberger, Nikolaus
    Lehrende
    • Ballenberger, Nikolaus
    • Hübner, Ursula Hertha